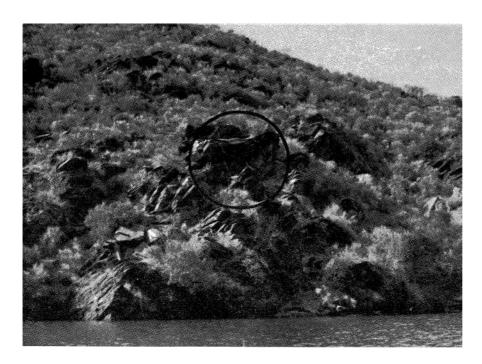
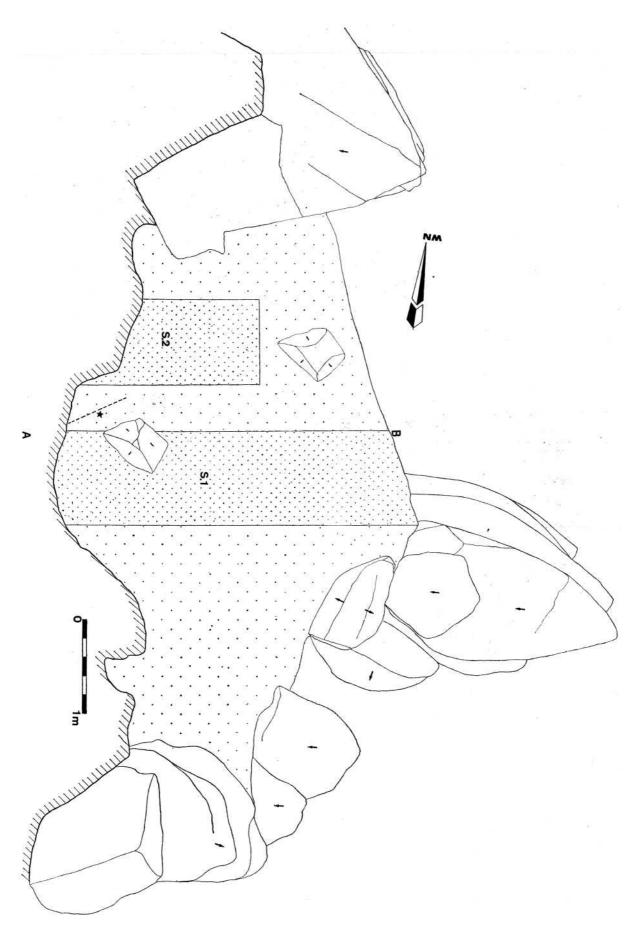

O FORNO CERÂMICO ROMANO DE LOUREDO (SANTA MARTA DE PENAGUIÃO)

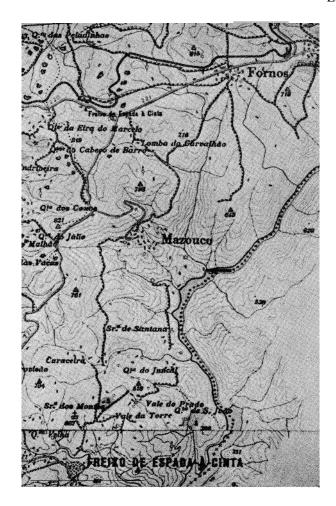
Armando Coelho F. da Silva, António Baptista Lopes e Manuel Tuna

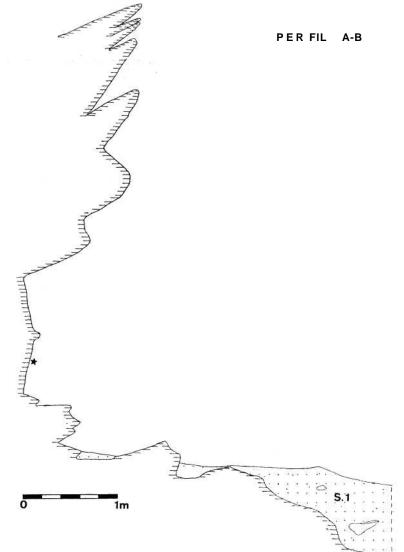
Neste trabalho se apresenta o relatório da escavação de um forno de cerâmica dos tempos da romãnização descoberto no concelho de Santa Marta de Penaguião, distrito de Vila Real, no lugar da Ponte da freguesia de Louredo, na fronteira com a de Fornelos, topónimo bem denunciador da sua conotação arqueológica.


A sua identificação ficou a dever-se à prospecção arqueológica desenvolvida na região por um dos signatários (M.T.) a partir da memória da população sobre o aparecimento há cerca de trinta anos de uma «fábrica com chamine» por ocasião de um arroteamento agrícola em que se procedia ao enterro de canas de milho para

Coordenadas geodésicas (SCE, folha 114): 41° 15' 5" Lat N. I° 20' 4" Long. E. Lx.


1 — Localização das gravuras, perto da confluência da ribeira de Albagueira com o Douro, vendo-se o vale daquela ribeira e a actual albufeira deste rio.


2—0 local das gravuras visto do rio Douro.


3 — Gravura paleolítica de Mazouco, representando um cavalo (a escala mede c. de 15 cm).

Planta do local das gravuras rupestres de Mazouco, vendo-se a implantação das duas sondagens realizadas (S.1 e S.2). Projecção da parede gravada indicada a tracejado, com uma estrela; A-B — localização do perfil da fig. anterior (est. 1-2).

1 — Localização das gravuras rupestres de Mazouco (indicada pela seta). Esc: 1/100.000.

2 — Perfil do local das gravuras (v. est. seguinte), praticadas na parede rochosa assinalada com uma estrela.

VÁRIA 145

contactos entre xistos e granitos?), o ângulo da sua exposição aos agentes erosivos, a sua protecção por um ressalto do afloramento xistoso, etc. O facto das gravuras estudadas anteriormente permanecerem como um caso isolado só acentua o seu interesse; trata-se, sem dúvida, de uma das mais relevantes descobertas da Arqueologia portuguesa dos últimos anos.

Para além delas, a importância arqueológica da zona centra-se em épocas pós-pré-históricas- Tal importância parece relacionar-se com o facto de a margem portuguesa do Douro se apresentar localmente menos alcantilada, proporcionando boas condições de acesso, que devem ter condicionado desde remotos tempos a implantação do habitat. No Picão do Castelo, também chamado Castelo dos Man-

ganais (ou Manganeis) na confluência da ribeira do Juncai com o Douro, existe um povoado fortificado, com nítidos restos de muralhas e de casas, à superfície do qual recolhemos cerâmicas (de construção e de recipientes) (8). Para norte, na capela de Santana, guarda-se uma cabeça de escultura zoomórfica, enquadrável no vasto conjunto de figurações proto-históricas habitualmente conhecidas pela designação de «berrões» (*). Perto, no sítio de Anagácia, têm aparecido mós e cerâmicas. Seria importante um estudo sistemático destes locais, por forma e definir qual a real extensão da implantação proto-histórica, romana e talvez medieval da área contígua ao rio Douro, em contraste com um povoamento posterior, quicá algo mais retraído das margens (

de Freixo de Espada-à-Cinta e pelo Instituto Português do Património Cultural.

⁽⁸⁾ Segundo a lenda, nestas ruínas do «Castelo» de Manganais, junto ao «Penedo» (muralhas), ouve-se o matraquear do tear de uma moura encantada, nas

manhãs de S. João (com. Sr. Armando Lopes, de Mazouco).

A este local refere-se F. Manuel Alves, Memórias Arqueológico-Históricas do Distrito de Bragança, IX, 2.ª ed., 1975J, p. 466.

Note-se que a pouco mais de 1 km. para SW deste local se situa a importante estação de Santa Luzia (conhecida como «castro do Monte de Santa Luzia»). Sobre ela, estação de Santa Luzia (conhecida como «castro do Monte de Santa Luzia»). Sobre ela, pode consultar-se, de Santos Júnior, A cultura dos Berrões no Nordeste de Portugal, Trabalhos de Antropologia e Etnologia, XXII (4), 1975; idem, Novos elementos da remota zoolatria em Trás-os-Montes, ib., XXIII (1),, 1977; idem, Mais um berrão da zona do castro do Monte de Santa Luzia (Freixo de Espada-à-Cinta). ib., XXIII (2-3)," 1978. V. também, sobre um outro povoado fortificado do concelho, Santos Júnior, O Castelo dos Mouros, Castro do Monte de S. Paulo e a sua Calçada de Alpajares (Freixo de Espada-à-Cinta), Trabalhos de Antropologia e Etnologia, XXIII (4), 1980.

(b) V. Santos Júnior, Mais três berrões proto-históricos de Freixo de Espada-à-Cinta, Trabalhos de Antropologia e Etnologia, XXIV (1), 1981. O autor deste trabalho chama também a atenção para o «Picão da Raposa», a cerca de «duas a três centenas de metros» da capela de Santana, que considera um pequeno castro (op. cit., p. 107).

(c) Os trabalhos realizados em Mazouco foram apoiados pela Câmara Municipal de Freixo de Espada-à-Cinta e pelo Instituto Português do Património Cultural.

VÁRIA 161

Quadro II - PROPRIEDADES FÍSICAS DOS ELEMENTOS DE ADORNOS DE COR VERDE

				-																		
Diafanidade	opaco	opaco a translúcido	opaco	*	opaco	opaco a translúcido	translúcido	*	*	*	translúcido a opaco	*	opaco	*	*	translúcido a opaco	translúcido	*	opaco	translúcido	opaco	*
Luminescên- cia U. V.	negativa	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Risca	branca	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Cor	28C5 — verde-patina	26D7 — verde-acinzentado	28B3 — verde-acinzentado	26A3 — verde-branco	29B4 — verde-acinzentado	26D8 — verde-crómio	26E5 — verde-acinzentado	26E6 — verde-acinzentado	27D4 — verde da Grécia (verdigris)	26E8 — verde-escuro	26C5 — verde-acinzentado	26C5 — verde-acinzentado	27E7 — verde-acinzentado	27E8 — verde-escuro	27D7 — verde-pavão	27E7 — verde-acinzentado	26D8 — verde-crómio	27E5 — verde-jade	26A5 — verde-claro	26D7 — verde-acinzentado	26B5 — verde-acinzentado	27C5 — verde-mar
Brilho	ceroso	*	*	baço	ceroso	*	*	*	ceroso a baço	ceroso	*	*	*	*	*	*	*	ceroso	paço	ceroso	*	*
Fractura	irregular	ı	1	irregular	*	*	*	*	ı	irregular	*	1	1	irregular	1	irregular	*	*	ı	irregular	*	*
н	5,5	4,5	4,5	4,5	2	4,5	4,5	9	2,5	2	2	5,5	4,5	4,5	4,5	4,5	4,5	2,5	2	4,5	4,5	4,5
.	2,3	2,5	2,5	2,5	2,5	2,5	2,7	2,5	2,7	2,5	2,5	2,5	2,5	2,5	2,5	2,5	1	2,8	2,5	2,5	2,5	2,3
Exemplar N.º	-	7	က	3-A	3-B	3-0	3-D	3-E	3-F	3-G	3-Н	4	വ	5-A	5-B	9	7	∞	8-A	8-B	6	10

VARISCITE Exemplar n.° 5

MOSCOVITE Exemplar n.° 3-F

Fig. 2 — Espectros de difracção (diagramas de pó) das amostras.

VÁRIA 163

QUADRO IV

		Exe	mplar N.° 3-E	E Exemplar N.° 3		Exemp	olar N.° 8	A.S.T.M. 7-32		
ASTM Moscovi	ร.การจ te-ZMj	Anta dos	do Cabeco Moinhos	Anta dos	do Cabeco Moinhos	S Paulo-Almada Setúbal		Moscov tipo	ite sin 2M _X	tética
d (A)		d (A)	I	d (A)	I	d (A)	I	d (A)		
9,95	95	9,91	М	9,91	M	9,93	VS	10,0	>	100
4.97	30	4.91	M	4.97	W	4,93	M	5.02		55
4.47	20	4.43	S	4.46	М	4.43	S	4.48 4.46 4.39		55 65 14
4.30 4.11	4	4.11		4,26 4,11	VW VW	4.10	vw	4.39 4.30 4.11		20 14
3.95	6		¥7¥¥7					3.973		12
3.88	14			3.845	**7	3.85	W	3.889 3.735		35
3,73 3,48	18 20	3,672 3,476		3,692 3,449		3.69 3,47	W W	3,735		30 45
3,34	25	3,301		3,315	W	3,31	VS	3,351		100
3,32	100	3,301		1	S		V 15	3.351	\ >	
3.19	30	3.166	M	3.190	***	3.16	M	3.208		45
3.12 2,987	25	2,961	M	3.085 2,986	*7*7**7	2,97	W	2,999		45
2.859	25 25			2.853	***	2.85	W	2.871		35
2.789	20			2.781		2.79	W	2.803		20
2,596	16					2,65	$\mathbf{w} \mathbf{w}$	2,589		50
2566		2 551	T /C	2 552	T /C	2.55	1 70	2.580		45
2.566 2.505	55 8	2.551	VS	2.552	VS	2.55	VS	2.562 2,514		90 20
2.491	14			2,482	* 7* 7* 7			2,317		20
2,465	8			2,46	VW			2,458		20
2,450	8	2,451	M					2,446		12
2.398	10	2 260	3.4	2 270		2.25	**7	2.396		10
2,384 2,254	25 10	2,360	M	2,370	**7	2,37	\mathbf{W}	2,380		25
2.254	10							2.247		12
2,236	4	2,234	\mathbf{W}	2,238	$\mathbf{w}\mathbf{w}$	2,23	$\mathbf{W}\mathbf{W}$			
2 200	0	2 101	X7XX 7	2 100	X7XX 7			2.236		6
2.208 2.189	8 4	2.191	v vv	2.198 2.18	VW VW			2.201 2.184		6 8
2,149	16			2.10	* **			2.104		"
								2.149		10
2,132		2,119	WW	2,114	**7	2,11	TT 7	2,132		25
2.070 2,053	4 6	2.067 2,035	W W WW	2,047	$\mathbf{w}\mathbf{w}$	2.05	vw	2,051		6
1.993		1.984	S	1.992		1.98	V VV	2,031		75
			Б			-	-	1.975		14
1.972	10			1.960	\mathbf{w}]		
1.951 1.941	6 4	1 025	ww	1 044	ww					
1.894	2	1.935		1.944	** **	1.90	M]		
1.871	4	1,863	$\mathbf{v}\mathbf{w}$							
1,822	4	1.811	**7	1,814	$\mathbf{w}\mathbf{w}$					
1,746	4	1 724		1 724	¥7¥¥7	1.72	***	1.504		,
1.731 1.710	8 6	1.726	**7	1.724	VW	1.72	W	1.736 1.699		6 6
1,704	6							1,699		6
1,699	4	1,683	$\mathbf{v}\mathbf{w}$							
1.662	12			1 (54				1.670		12
1,646	25	1,642		1,654	**7	1,64	M	1,653		18
1,640	25 6	1,044	c	1.637	**7	1,04	171			
1,620	6			1,615	ww					
1				l						

QUADRO	IV	(Continuação)
--------	----	---------------

	Exemp	plar N.° 3-E	Exemp	lar N.° 3-F	Exemp	lar N.° 8	A.S.T.M	1. 7-32
A T M AMAS Moscovite-ziv^		do Cabeco Moinhos	dos N	Anta do Cabeco dos Moinhos Setúbal		Moscovite sintética tipo 2Ma		
d (A)	d (A)	I	d (A)	I	d (A)	I	d (A)	1/^
1,603 6	1,591	W	1,595	VW	1,59	W	1,602	8
1.573 4								
1,559 8	1,557	11 7	1,551	T T7	1,55	$\mathbf{v}\mathbf{w}$		
1.541 4								
1,524 12		₹₹7	1,517		1.51	vw	4 400	40
1.504 30	1.494 1.473	•	1.494 1.475	WW	1.49	M	1.499	40
1,453 4	1,451		1,450		1.46	W		
	1,420	47447	1,428	******	1,42	$\mathbf{w} \dot{\mathbf{w}}$		
1,424 2 1,414 2 1,388 2 1,375 2			1.413	T7TT 7				
1.388 2	1.389	-	1.390					
	1.371	47447	1,370	*****	1 24	3.6		
1,352 12 1,335 10	1,347 1,332	M	1,350 1,336		1,34 1.33	M M		
1.335 10	1.332	TT 7	1.319	TT 7	1.55	IVI		
1,299 8			1/1/					
1.292 6					1.29	\mathbf{W}		
1.274 6					1.27	\mathbf{M}		
1.267 4								
1.253 6 1.246 8					1,24	M		
1.240 6					1.24	IVI		
1.221 6								
1,208 4								
1,200 4								
1.1903 4					1 10	***		
1.1828 4 1.1582 2					1.18	\mathbf{W}		
1.1300 4								
1.1220 4								
1,1167 4								

5—CONCLUSÕES

O presente artigo pretende ser mais uma contribuição para um melhor conhecimento da problematica originada pelos objectos de adorno de cor verde, encontrados em estações arqueológicas portuguesas (Fig 3).

Nesta ordem de ideias e conscientes de que o assunto nao está

objectos, como se pode observar no Quadro V:

2.ª — A identificação de outras três espécies minerais — moscovite, talco e clorite — parece querer indi-

car que na «ausência» de variscite os artífices préhistóricos lançavam mão

> de outros materiais igual· mente de cor verd de

conclusões.

l.a — A VARISCITE continua a ser até ao momento o mineral mais utilizado na confecção deste tipo de ^ 25 %) a MOSCOVITE.
3. A área de distribuição dos elementos de variscite estudados em Portugal foi aumentada pelo:

Fig. 3 — Carta provisória de distribuição de objectos de adorno de cor verde, com indicação das espécies mineralógicas constituintes, identificadas por difracção de raios X. Os algarismos referem o número total das amostras identificadas. Símbolos coalescentes indicam proveniên-BEIRAL VILA DO CONDE **③** BAIÃO 50 Km AROUCA cia comum. As estações arqueológicas identificadas são as referentes a este trabalho (cf. Quadro V); as restantes, referem-se ao trabalho de CANELHAS, M. G. (1973). NELAS FIGUEIRA DA FOZ 1 A . CRATO **O** ALMAR 21 1 SERPA A TALCO CLORITE MOSCOVITE VARISCITE AFLORAMENTOS DE VARISCITE

QUADRO V

Classe mineralógica	Espécies minerais identificadas	N.° total de amostras	N.° de amostras por referência	%
Fosfatos	Variscite	40	21 (CANELHAS, 1973) 19 (desta comunicação)	70
Silicatos	Moscovite	14	11 (CANELHAS, 1973) 3 (desta comunicação)	24,5
	Talco	2	2 (CANELHAS, 1973)	3,5
	Clorite	1	1 (Canelhas, 1973)	2

- -alargamento da zona interior alentejana para Norte e Sul,
- prolongamento da zona litoral estremenha para Norte, desde o Mon dego até ao Lima,
- aparecimento de duas novas zonas, uma na Beira Alta e outra no Douro Litoral,
- confirmação do seu aparecimento na mar gem Sul do Tejo.

BIBLIOGRAFIA

- ARRIBAS, A. et ai. (1971) Estudo Mineralógico de Ia variscita de Pala-zuelo de Ias Cuevas, Zamora (Espafta). Stud. Geol (Salamanca) 2:
- CANELHAS, M. G. SALVADO (1973) Estudo Radiográfico de «Calaítes» Portuguesas. Rev. Guimarães (Guimarães) 83: (1/4): 125-145.
- CHEC, F.; SLANSKY, E. (1965)powder study and thermal investigation of A1PO₄,2H₂O minerais: Acta Universitatis Carolinne—Geológica, N.° 1 págs. 1-30.
- FORESTIER, F. H.; LASNIER, B. et UHELGOUACH, J. (1973) Découverte de minyulite en échantillons spectaculaires, de Wavellite et de Variscite dans les phtanites siluriens près de Pannecé (Loire Atlantique), Buli Soe. fr. Mineral Cristallogr., 96: 1,67-71. FORESTIER, F. H.; LASNIER, B. & LHELGOUACH, L. (1973)—A pro-pôs de Ia «Callais». Découverte

- d'un gisement de variscite à Pannecé (Loire-Atlantique). Analyse de quelques «perles vertes» néolitiques. Bui Soe. Préhist. Franc. (Paris) 70: 173--
- 180 (CRSM. n.º 6). GONÇALVES, ANTÓNIO A. HUET DE B. (1980) Elementos de adorno de cor verde provenientes de estações arqueológicas portuguesas. Importância do seu estudo mineralógico. Trab. Inst. Antropol. Fac. Ciênc. Porto, 40.
- Index to the Powder Diffraction File (Inorganic). American Society for Testing and Materials (1966).
- KLOCKMÁNN & RAMDOHR (1961) Tratado de Mineralogia, Editorial Gustavo Gili. Barcelona.
- KOSTOV, IVAN (1968)-Mineralogy Oliver and Boyd Ltd., Edinburgh and London.
- PALACHE, CHARLES; BERMAN, HAR-RY & FRONDEL, CLIFFORD (1951) Danas Sistem of Mineralogy 7 th Ed. Vol. II —Halides, nitrates, borates, carbonates, sulfates, phosphates, arsenates, tungstates, molybdates, etc. John Wiley, Chapman & Hall, New York (N. Y.) London.

 Powder Diffraction File — Sets 1-5 (Revi-
- sed)— 1967; 6-10 (Revised), 1967; 11-15 (Revised) 1972; 16-18 (Revised), 1974. Inorganic volume, n.° PD 1S-5IRB—Joint Commitee on Powder Diffraction Standards. Second Printing—Philaddelphia, Pa November 1967.
- Powder Diffraction File Search Manual-Alphabetical Listing — Inorganic Compounds; Joint Committee on Powder Diffraction Standards. Easton, Md. 1975.
- SALVADOR, P. S.; FAYOS, J. (1972) Some aspects of the structural relationships between «Messbach-Type» and «Lucin-Type» variscites — American Mineralogist. Vol. 57, págs. 36-41, 1972.